About trigonometric-polynomial bounds of sinc function
نویسندگان
چکیده
منابع مشابه
When Is a Trigonometric Polynomial Not a Trigonometric Polynomial?
for some nonnegative integer k and complex numbers a0, . . . , ak, b1, . . . , bk ∈ C. Trigonometric polynomials and their series counterparts, the Fourier series, play an important role in many areas of pure and applied mathematics and are likely to be quite familiar to the reader. When reflecting on the terminology, however, it is reasonable to wonder why the term trigonometric polynomial is ...
متن کاملNonperiodic Trigonometric Polynomial Approximation
The most common approach for approximating non-periodic function defined on a finite interval is based on considering polynomials as basis functions. In this paper we will address the non-optimallity of polynomial approximation and suggest to switch from powers of x to powers of sin(px) where p is a parameter which depends on the dimension of the approximating subspace. The new set does not suf...
متن کاملThe Trigonometric Polynomial Like Bernstein Polynomial
A symmetric basis of trigonometric polynomial space is presented. Based on the basis, symmetric trigonometric polynomial approximants like Bernstein polynomials are constructed. Two kinds of nodes are given to show that the trigonometric polynomial sequence is uniformly convergent. The convergence of the derivative of the trigonometric polynomials is shown. Trigonometric quasi-interpolants of r...
متن کاملPiecewise quadratic trigonometric polynomial curves
Analogous to the quadratic B-spline curve, a piecewise quadratic trigonometric polynomial curve is presented in this paper. The quadratic trigonometric polynomial curve has C2 continuity, while the quadratic B-spline curve has C1 continuity. The quadratic trigonometric polynomial curve is closer to the given control polygon than the quadratic B-spline curve.
متن کاملSubrings in Trigonometric Polynomial Rings
In this study we explore the subrings in trigonometric polynomial rings. Consider the rings T and T ′ of real and complex trigonometric polynomials over the fields R and its algebraic extension C respectively ( see [6]). We construct the subrings T0 of T and T ′ 0, T ′ 1 of T ′. Then T0 is a BFD whereas T ′ 0 and T ′ 1 are Euclidean domains. We also discuss among these rings the Condition : Let...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Sciences and Applications E-Notes
سال: 2020
ISSN: 2147-6268
DOI: 10.36753/mathenot.585735